Metastability of Spinel-type Solid Solutions in the SiO₂-Al₂O₃ System J. M. McHale, †,§ K. Yürekli, ‡,§ D. M. Dabbs, ‡,§ A. Navrotsky, *,†,§ S. Sundaresan,^{‡,§} and I. A. Aksay^{‡,§} Departments of Geosciences and Chemical Engineering, and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544-5263 Received June 24, 1997. Revised Manuscript Received August 19, 1997 The addition of small amounts (2–10 wt %) of SiO_2 to γ - Al_2O_3 increases the temperature of heat treatment necessary for transformation to α -Al₂O₃ by \sim 100 K. We have studied this system using high-temperature solution calorimetry in molten 2PbO·B₂O₃ at 1043 K. Our results indicate that the spinel-type Al_2O_3 -SiO₂ solid solutions with 2-10 wt % SiO₂ are always energetically metastable by 30-35 kJ·mol⁻¹ (on a 4 O²⁻ per mole basis) with respect to α-Al₂O₃ and quartz. Calculation of the maximum configurational entropy of the solid solutions allowed determination of the likely most negative value of the Gibbs free energy of the materials. The solid solutions are somewhat entropy stabilized, but still thermodynamically metastable by > 10 kJ·mol⁻¹ at 1400 K. Therefore, SiO₂ addition appears to provide mainly a kinetic hindrance to α -Al₂O₃ formation. ## Introduction Transition aluminas are widely used as high surface area supports for noble metal (i.e., Pt, Pd, Rh) hydrocarbon combustion catalysts.1 Under operating conditions (e.g., in automotive exhaust treatment), these catalysts are often subjected to H2O vapor at temperatures in excess of 1273 K. These conditions have been shown to reduce drastically the specific surface area of γ-Al₂O₃, which effectively reduces the activity of the catalysts and shortens their usable lifetimes. Small additions of about 2-10 wt % of SiO₂ to Al₂O₃ stabilize γ-Al₂O₃ against loss of specific surface area when the material is exposed to H₂O vapor at elevated temperatures.² SiO₂ addition increases the temperature necessary for complete transformation to α-Al₂O₃ by about 100 K.^{2,3} These factors make SiO₂-Al₂O₃ solid solutions promising candidates for high surface area catalytic supports under harsh conditions. The formation of an aluminosilicate spinel with an X-ray diffraction pattern similar to γ -Al₂O₃ has been frequently observed upon calcination of sol-gel precursors to mullite. The exact composition of this phase has been the subject of some debate. Chakravorty et al.4 believed the phase to be a cubic modification of mullite, with identical $3Al_2O_3 \cdot 2SiO_2$ stoichiometry. Brown et al.⁵ have reported NMR evidence which suggested that the spinel phase was much closer in composition to pure γ-Al₂O₃ than to mullite. Sonuparlak et al.⁶ and Okada and Otsuka⁷ proposed that the spinel phase was a solid solution of ~ 8 wt % SiO₂ in Al₂O₃ with a γ -Al₂O₃ structure, which might be thermodynamically stable with respect to α -Al₂O₃ and SiO₂. This \sim 8 wt % SiO₂ in Al₂O₃ composition was supported by an analytical transmission electron microscopy (TEM) study of NaOH treated samples.⁶ Gerardin et al.⁸ later reported the SiO_2 content to be \sim 7 wt % based on ²⁹Si NMR. In this contribution, we present an assessment of the thermodynamic stability of these aluminosilicate spinel solid solutions with 0−10 wt % SiO₂. The materials were studied using high-temperature solution calorimetry in molten 2PbO·B₂O₃ at 1043 K. In addition, the maximum configurational entropy contribution to the free energy of each solid solution was calculated. Our results indicate that Al₂O₃-SiO₂ solid solutions are always metastable with respect to α-Al₂O₃ and quartz and suggest that the apparent stabilization achieved upon SiO₂ addition has kinetic origins. # **Experimental Procedure** Sample Preparation. Aluminosilicate solid solutions were prepared with 0, 2, 4, 6, 8, 10, 12, and 16 wt % SiO₂. Samples were synthesized by spray drying. Approximately 0.10 mol Al(NO₃)₃·9H₂O was dissolved in 100 mL of 95% ethanol. The appropriate amount of Si(OCH₂CH₃)₄ (tetraethoxysilane, TEOS) for the desired silica content was added. The resulting solution was stirred for 1.5 h to ensure homogeneity and then sprayed onto a heated aluminum pan. The temperature of the pan was adjusted to maximize the rate of drying and minimize spattering of the solution from the surface. The resulting precursors were then denitrated by calcination at 773 K. Phase formation was studied by calcining the denitrated precursor at various temperatures between 1073 and 1773 K. Calorimetry was performed on samples calcined at 1273 K for 6 h. γ -Al₂O₃ (0 wt % SiO₂) and α -Al₂O₃ were prepared by an ^{*} Author for correspondence. Present address: Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616. E-mail: anavrotsky@ucdavis.edu. Department of Geosciences. Department of Chemical Engineering. [§] Princeton Materials Institute. ^{Abstract published in Advance ACS Abstracts, October 1, 1997. Trimm, D. L. Appl. Catal. 1983, 7, 249. Beguin, B.; Garbowski, E.; Primet, M. J. Catal. 1991, 127, 595.} ⁽³⁾ High alumina fibers produced by Sumitomo Chemical are stabilized as γ-Al₂O₃ with the addition of ~8 wt % silica. (4) Chakravorty, A. K.; Ghosh, D. K. J. Am. Ceram. Soc. 1988, 71, ⁽⁵⁾ Brown, I. W. M.; MacKenzie, K. J. D.; Bowden, M. E.; Meinhold, R. H. J. Am. Ceram. Soc. 1985, 68, 298. ⁽⁶⁾ Sonuparlak, B.; Sarikaya, M.; Aksay, I. A. J. Am. Ceram. Soc. **1987**, *70*, 837. ⁽⁷⁾ Okada, K.; Otsuka, N. J. Am. Ceram. Soc. 1986, 69, 652. ⁽⁸⁾ Gerardin, C.; Sundaresan, S.; Benziger, J.; Navrotsky, A. Chem. Mater. 1994, 6, 160. analogous procedure from a precursor without TEOS addition via calcination at 1203 and 1773 K, respectively. Sample Characterization. The precursor decomposition and product formation were studied by simultaneous thermogravimetric and differential thermal analysis (TGA/DTA) (Rheometrics Model STA 1500H, Piscataway, NJ) and powder X-ray diffraction (XRD) (Philips Electronics, APD 3270, Mahwah, NJ). Three separate TGA/DTA experiments were performed for each SiO₂ content: (1) on the "as-prepared" precursor, (2) on the precursor after denitration at 773 K, and (3) on the sample for calorimetry after calcination at 1273 K and equilibration of the adsorbed H2O content with the atmosphere of the calorimetry laboratory (see below). The first two TGA/DTA experiments were performed at 10 K·min⁻¹ to 1273 K and held for 1 h at 1273 K before cooling to room temperature. The third TGA experiment was performed at 10 K̂⋅min⁻¹ to 1043 K, held for 1 ĥ at 1043 K, and then heated at 10 K·min⁻¹ to 1773 K. This procedure allowed determination of the total adsorbed H2O content and the H2O content that remained adsorbed after transposed temperature drop calorimetry (see below). Calorimetry. High-temperature drop solution calorimetry was performed in a Tian-Calvet twin calorimeter, described in detail by Navrotsky, 9 operating at ~1043 K with 2PbO·B₂O₃ as the solvent. Samples were pressed into pellets of $\sim 10-20$ mg and dropped, from room temperature, into molten 2PbO· B₂O₃ located in the hot zone of the calorimeter. The measured heat effect was a combination of the heat content and heat of solution of the sample. Heat effects were calibrated against the heat content of Pt by dropping ~200 mg pieces of Pt wire from room temperature into the calorimeter. Due to their relatively high specific surface area, the spinel-type aluminosilicate solid solutions adsorbed significant amounts of atmospheric water, the removal of which also contributed to the measured heat effects. To ensure a stable, equilibrium H₂O content, as in previous studies on nanophase aluminas10 and AlPO₄ zeolites,¹¹ the samples were exposed to the air in the calorimetry laboratory, which has a precisely controlled environment (295 \pm 1 K and 55 \pm 2% relative humidity), for \geq 7 days. The equilibrium water content on each sample was then determined thermogravimetrically as described above. All calorimetric experiments were run under flowing Ar (90 mL/ min) to flush evolved H₂O from the calorimeter. It has been previously demonstrated that under these conditions the water does not remain in or interact energetically with the solvent, and exits the calorimeter as vapor. To evaluate the heat effect due to removal of H2O from the samples, transposed temperature drop calorimetry, wherein the sample was dropped into empty (without solvent) platinum crucibles, was performed in the same calorimeter. The measured heat effect from transposed temperature drop experiments was the heat content of the sample and the heat due to water removal. However, all of the adsorbed H2O on these samples was not desorbed during the transposed temperature drop experiments, which heated the sample to 1043 K (the calorimeter temperature) for ~ 1 h. Therefore, the weight percentage of H₂O remaining on the samples after a 1 h heat treatment under flowing Ar was determined for each sample via TGA as described above. This tightly bound H₂O, which usually amounted to \sim 0.3 wt %, is removed during drop solution calorimetry, as the sample completely dissolves in the lead borate solvent. Removal of this strongly chemisorbed H₂O contributes to the measured enthalpy of drop solution calorimetry. Therefore, the data from transposed temperature drop experiments must be corrected to determine the enthalpy of solution of the aluminosilicate solid solutions (see below). Coster et al.13 and Gervasini and Auroux14 have shown that the initial heat of adsorption of H2O onto transition aluminas Table 1. Summary of XRD Results on Aluminosilicate Samples a | calcination
temp (K) | 0%
SiO ₂ | 2%
SiO ₂ | 4%
SiO ₂ | 6%
SiO ₂ | 8%
SiO ₂ | 10%
SiO ₂ | |-------------------------|--|--|--|--|--|--| | 1073 | γ-Al ₂ O ₃ | amorph | amorph | amorph | amorph | amorph | | 1273 | α-Al ₂ O ₃ | γ -Al ₂ O ₃ | | 1373 | α -Al ₂ O ₃ | γ-Al ₂ O ₃ | γ -Al ₂ O ₃ | | 1473 | α -Al ₂ O ₃ | γ-Al ₂ O ₃ | γ -Al ₂ O ₃ | | 1573 | α -Al ₂ O ₃ | α-Al ₂ O ₃ | $[^]a$ Amorph signifies no crystalline phases were detected. $\gamma\text{-}Al_2O_3$ denotes material with an XRD pattern similar to that of gamma alumina. $\alpha\text{-}Al_2O_3$ signifies material where some $\alpha\text{-}Al_2O_3$ was detected. can exceed 200 kJ·mol⁻¹ H₂O. Coster et al.¹³ fitted their adsorption data to Freundlich curves, which when integrated yield an average of 132.9 kJ·mol⁻¹ for the integral heat of chemisorption of H₂O for coverages of 5.4 OH/nm². As our samples are \geq 90 wt % Al₂O₃, this value should also be acceptable for the aluminosilicates, but as the final state of transposed temperature drop calorimetry is H₂O vapor at 979 K, the heat content of H₂O between 298 and 1043 K, 28.5 kJ·mol⁻¹, needs to be added to the heat of adsorption. The transposed temperature drop calorimetry data were then corrected for the H₂O remaining adsorbed at 1043 K by adding 160 ± 10 kJ·mol⁻¹ H₂O to the measured value. #### **Results** The thermal decomposition of the precursor (as prepared) was studied by simultaneous TGA/DTA. A broad endotherm was observed at ~ 523 K, and two discrete exotherms were observed at \sim 623 and \sim 1173 K. The 523 K endotherm can be attributed to nitrate decomposition, while the 623 K exotherm might have been due to oxidation of residual organic material. The results of XRD experiments are summarized in Table 1. Powder XRD patterns of products obtained from calcination of precursors with 2-10 wt % SiO₂ at 1073 K were devoid of Bragg scattering, while calcination of the 0% SiO₂ sample at 1073 K yielded an XRD pattern which could be indexed to γ -Al₂O₃. Calcination of precursors with 2-10 wt % SiO₂ at 1273 K yielded aluminosilicate material with an XRD pattern similar to that of γ -Al₂O₃. This indicates that the DTA exotherm observed at ~1173 K is due to crystallization of this spinel-type structure from the amorphous material. Mullite was detected by XRD after calcination of the 16 wt % SiO₂ sample at 1273 K. The exact temperature of crystallization of the spinel-type solid solution (or mullite), as judged by the temperature at which the second exotherm was observed via DTA, increased linearly with increasing SiO₂ content up to about 10% (see Figure 1). In all SiO₂-doped samples, the minimum calcination temperature necessary for formation of α-Al₂O₃ was greater than 1473 K. Calcination of the pure Al₂O₃ precursor (0% SiO₂) at only 1273 K resulted in partial transformation to α -Al₂O₃ (detected via XRD), thus demonstrating the expected suppression of α -Al₂O₃ formation in the SiO₂-doped samples. To determine if the apparent stabilization of the aluminosilicate spinel-type solid solution with respect to transformation to α -Al₂O₃ has an energetic origin, high-temperature solution calorimetry was performed on samples with 0–10 wt % SiO₂ calcined at 1273 K. ⁽⁹⁾ Navrotsky, A. Phys. Chem. Minerals 1977, 2, 89. ⁽¹⁰⁾ McHale, J. M.; Navrotsky, A; Perrotta, A. J. J. Phys. Chem. B **1997**, 101, 603. ⁽¹¹⁾ Hu, Y.; Navrotsky, A.; Chen, C.-Y.; Davis, M. E. *Chem. Mater.* **1995**, *7*, 1816. ⁽¹²⁾ Navrotsky, A.; Rapp, R. P.; Smelik, E.; Burnley, P.; Circone, S.; Chai, L.; Bose, K.; Westrich, H. R. Am. Mineral. 1994, 79, 1099. ⁽¹³⁾ Coster, D. J.; Fripiat, J. J.; Mucsas, M.; Auroux, A. *Langmuir* **1995**, *11*, 2615. ⁽¹⁴⁾ Gervasini, A.; Auroux, A. *J. Phys. Chem.* **1993**, *97*, 2628. Table 2. Results of Sample Characterization and Calorimetry^a | SiO ₂
content
(wt %) | calcination
temp (K) | x in $Al_{8/3-4/3x}Si_xO_4$ | | H ₂ O
1043 K | $\Delta H_{ m ds} \ ({ m J/g})^b$ | $\Delta H_{ m ttd} \ ({ m J/g})^c$ | $\Delta H_{ m cttd} \ ({ m J/g})^d$ | $\Delta H_{ m soln} \ ({ m J/g})^e$ | ΔH_{soln} (kJ·mol ⁻¹ Al _{8/3-2x} Si _{2x} O _{4+x}) ^e | |---------------------------------------|-------------------------|-------------------------------|------|----------------------------|-----------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--| | 0 (α) | 1773 | 0 | 0.00 | 0.00 | 1093.8 ± 14.1 (5) | 775.9 ± 9.7 (6) | 775.9 ± 9.7 | 318.0 ± 17.2 | 43.2 ± 2.3 | | 0 (γ) | 1213 | 0 | 4.81 | 0.39 | 1059.9 ± 12.7 (6) | 988.4 ± 9.2 (6) | 1023.1 ± 9.5 | 38.6 ± 16.7 | 5.3 ± 2.3 | | 2 | 1273 | 0.0451 | 2.66 | 0.29 | 978.7 ± 9.9 (6) | 894.8 ± 7.2 (6) | 920.5 ± 7.3 | 59.7 ± 12.7 | 8.1 ± 1.7 | | 4 | 1273 | 0.0900 | 3.04 | 0.29 | 1003.8 ± 3.5 (6) | 906.8 + 14.4 (6) | 932.6 ± 14.5 | 73.4 ± 15.3 | 9.9 ± 2.1 | | 6 | 1273 | 0.1347 | 2.32 | 0.29 | 947.9 ± 4.2 (6) | 863.0 ± 14.6 (6) | 888.8 ± 14.6 | 60.5 ± 15.6 | 8.2 ± 2.1 | | 8 | 1273 | 0.1791 | 2.04 | 0.28 | 932.4 ± 16.0 (6) | 857.8 ± 5.1 (6) | 882.6 ± 5.3 | 50.8 ± 17.2 | 6.8 ± 2.3 | | 10 | 1273 | 0.2233 | 0.88 | 0.25 | 882.7 ± 8.7 (6) | 799.4 ± 12.3 (6) | 821.6 ± 12.4 | 61.6 ± 15.3 | 8.3 ± 2.0 | ^a Reported uncertainties are two standard deviations of the mean. Number in parentheses is the number of experiments performed. ^b Measured enthalpy of drop solution calorimetry. ^c Measured enthalpy of transposed temperature drop calorimetry. ^d Enthalpy of transposed temperature drop calorimetry corrected for H_2O remaining adsorbed at 1043 K. ^e Calculated enthalpy of solution of $Al_{8/3-2x}Si_{2x}O_{4+x}$ in $2PbO \cdot B_2O_3$ at 1043 K. **Figure 1.** Temperature of crystallization of a spinel-type aluminosilicate solid solution from amorphous aluminosilicate precursors as a function of SiO_2 content. Crystallization temperatures determined via DTA. The temperature reported for the 16 wt % SiO_2 sample corresponds to mullite formation To eliminate heat effects due to adsorbed H_2O , two separate calorimetric experiments were performed on each sample. In the first experiment, drop solution calorimetry, the sample (with equilibrium adsorbed H_2O content) is dropped into molten $2PbO \cdot B_2O_3$ in the calorimeter. The measured heat effect, ΔH_{ds} , is that accompanying the reaction: $$\begin{aligned} \text{Al}_{8/3-4x/3} \text{Si}_x \text{O}_4 \cdot n \text{H}_2 \text{O(s, 298 K)} \rightarrow \\ (^8/_6 - ^{4x}/_6) \text{Al}_2 \text{O}_3 (\text{soln in 2PbO} \cdot \text{B}_2 \text{O}_3, 1043 K) + \\ x \text{SiO}_2 (\text{soln in 2PbO} \cdot \text{B}_2 \text{O}_3, 1043 K) + \\ n \text{H}_2 \text{O(g, 1043 K)} \end{aligned} \tag{1}$$ In the second experiment, transposed temperature drop calorimetry, the sample is dropped into empty (without solvent) Pt crucibles in the calorimeter. The measured heat effect, $\Delta H_{\rm ttd}$, is that accompanying the reaction: $$Al_{8/3-4x/3}Si_xO_4 \cdot nH_2O(s, 298 \text{ K}) \rightarrow Al_{8/3-4x/3}Si_xO_4(s, 1043 \text{ K}) + nH_2O(g, 1043 \text{ K})$$ (2) By taking the difference between these two heat effects, the contribution of H_2O to the measured enthalpy can be eliminated, and the enthalpy of solution of the aluminosilicate solid solution in $2PbO \cdot B_2O_3$ at 1043 K, ΔH_{soln} Al_{8/3-4x/3}Si_xO₄(s, 1043 K) → $$(^{8}/_{6} - ^{4x}/_{6})\text{Al}_{2}\text{O}_{3}(\text{soln in 2PbO} \cdot \text{B}_{2}\text{O}_{3}, 1043 \text{ K}) + x\text{SiO}_{2}(\text{soln in 2PbO} \cdot \text{B}_{2}\text{O}_{3}, 1043 \text{ K})$$ (3) can be calculated as $$\Delta H_{\rm soln} = \Delta H_{\rm ds} - \Delta H_{\rm ttd} \tag{4}$$ However, this equation is slightly oversimplified. TGA revealed that all of the adsorbed H_2O was not removed from the samples during a 1 h heat treatment at 1043 K (i.e., during transposed temperature drop calorimetry). Therefore, the measured ΔH_{ttd} values were corrected for the remaining H_2O using a value of 160 kJ·mol $^{-1}$ H_2O from the recent heat of adsorption data of Coster et al. 13 This correction generally amounted to an increase of about 3% over the measured value (see Table 2). ## Discussion The ΔH_{soln} values for the aluminosilicate solid solutions are shown in Table 2 and in Figure 2 as a function of x in the general formula $Al_{8/3-4x/3}Si_xO_4$. The enthalpies of solution become slightly more endothermic with initial SiO_2 addition and then decrease after about 4 wt % SiO_2 . The energetic stability of the aluminosilicate solid solutions at 1043 K can be evaluated by comparing the ΔH_{soln} values to those obtained from mechanical mixtures of α -Al $_2O_3$ and quartz (i.e., the thermodynamically stable end members, dotted lines in Figure 2). This is illustrated through the following thermochemical cycle: Al_{8/3-4x/3}Si_xO₄(s, 1043 K) → $$\binom{8}{6} - \binom{4x}{6}$$ Al₂O₃(soln in 2PbO·B₂O₃, 1043 K) + x SiO₂(soln in 2PbO·B₂O₃, 1043 K) (5) $$\alpha$$ -Al₂O₃(s, 1043 K) \rightarrow Al₂O₃(soln in 2PbO·B₂O₃, 1043 K) (6) $$SiO_2$$ (quartz, 1043 K) \rightarrow SiO_2 (soln in 2PbO·B₂O₃, 1043K) (7) net: $$(^8/_6 - ^{4x}/_6)\alpha$$ -Al $_2$ O $_3$ (s, 1043 K) + x SiO $_2$ (quartz, 1043 K) \rightarrow Al $_{8/3-4x/3}$ Si $_x$ O $_4$ (s, 1043 K) (8) $$\Delta H_{\text{f}(1043 \text{ K})} = \Delta H_8 = -\Delta H_5 + (^8/_6 - ^{4x}/_6)\Delta H_6 + x\Delta H_7$$ (9) In the cycle above, and the discussion that follows, the solid solutions will be considered on a 4 mol O^{2-} basis in accord with the normal spinel stoichiometry. This treatment also simplifies configurational entropy calculations (see below). The enthalpy of solution of quartz Figure 2. Enthalpies of solution of the aluminosilicate solid solutions in 2PbO·B₂O₃ at 1043 K as a function of SiO₂ content. Dotted line represents the values expected from a mechanical mixture of coarse α -Al₂O₃ and quartz. **Figure 3.** Enthalpies at 1043 K (●) or free energies at 1400 K of formation of the aluminosilicate solid solutions relative to a mechanical mixture of coarse α -Al₂O₃ and quartz as a function of SiO₂ content. (■) Free energy at 1400 K including only the configurational entropy of the solid solution. (▲) Free energy at 1400 K including the configurational entropy of the solid solution and the entropy of the α -Al₂O₃ $\rightarrow \gamma$ -Al₂O₃ transition. **Table 3. Results of Configurational Entropy and Free** Energy Calculations^a | | | | G relative to $lpha$ -Al $_{8/3}$ O $_4$ | | | |-----------------------------|------------------------|---|--|---|--| | SiO ₂
content | <i>x</i> in | H relative
to α-Al _{8/3} O ₄ | S _{config} ,
1400 K | $S_{\text{config}} + S_{\alpha \rightarrow \gamma},$ 1400 K | | | (wt %) | $Al_{8/3-4/3x}Si_xO_4$ | $(kJ \cdot mol^{-1})^b$ | $(kJ \cdot mol^{-1})^c$ | $(kJ \cdot mol^{-1})^d$ | | | 0 (γ) | 0 | 38.0 ± 3.2 | 38.0 ± 3.2 | 27.3 ± 3.2 | | | 2 | 0.0451 | 32.9 ± 2.9 | 31.6 ± 2.9 | 20.9 ± 2.9 | | | 4 | 0.0900 | 28.8 ± 3.1 | 27.1 ± 3.1 | 16.4 ± 3.1 | | | 6 | 0.1347 | 28.3 ± 3.1 | 26.5 ± 3.1 | 15.8 ± 3.1 | | | 8 | 0.1791 | 27.4 ± 3.3 | 25.8 ± 3.3 | $15.1 \pm\ 3.3$ | | | 10 | 0.2233 | 23.7 ± 3.1 | 22.5 ± 3.1 | 11.8 ± 3.1 | | ^a Uncertainties propagated as the square root of the sum of the squares of individual uncertainties. ^b Enthalpy relative to a mechanical mixture of α-Al_{8/3}O₄ and Si₂O₄ (quartz). ^c Free energy relative to α-Al_{8/3}O₄ and Si₂O₄ (quartz) considering only configurational entropy contributions. d Free energy relative to α -Al_{8/3}O₄ and Si₂O₄ (quartz) considering configurational entropy contributions and the ΔS of the α -Al_{8/3}O₄ to γ -Al_{8/3}O₄ transition. in 2PbO·B₂O₃, $-3.51 \pm 0.18 \text{ kJ·mol}^{-1} \text{ SiO}_2$, was measured previously in our laboratory. 15,16 The enthalpies of the aluminosilicate solid solutions relative to corundum and quartz are shown as a function of SiO2 content are shown as the filled circles in Figure 3. Although there is a slight energetic stabilization on SiO2 addition to the spinel-type alumina, the solid solutions are still >30 kJ·mol⁻¹ less energetically stable than a mechanical mixture of α-Al₂O₃ and quartz (see Table 3 for exact values). The slight energetic stabilization of the solid solutions (with respect to γ-Al₂O₃ and quartz) appears to plateau at about 4 wt % SiO₂. Due to the presence of tetrahedral and octahedral sites in the spinel structure and the fairly random distribution of Al3+ and vacancies over these sites, there is the potential for a large configurational entropy contribution to the free energy of the aluminosilicate solid solutions. To determine the true thermodynamic stability of the solid solutions, we calculated the maximum configurational entropy arising from SiO2 addition and disorder of Si⁴⁺, Al³⁺, and vacancies over the available crystallographic sites. Assuming an initially random distribution of Al³⁺ ions, and inserting Si⁴⁺ onto only tetrahedral sites, the configurational entropy can be represented by that accompanying the reaction $${^{x}/_{2}Si_{2}O_{4} + (1 - {^{x}/_{2}})(Al_{8/9}\square_{1/9})[Al_{8/9}\square_{1/9}]_{2}O_{4} \rightarrow (Al_{8/9-4x/3}\square_{1/9+x/3}Si_{x})[Al_{8/9}\square_{1/9}]_{2}O_{4} (10)}$$ where \Box denote vacancies, parentheses denote tetrahedral site, and square brackets denote octahedral sites. The maximum configurational entropy of the solid solution, S_{config} , is then $$S_{\text{config}} = -R[(^{8}/_{9} - ^{4x}/_{3}) \ln(^{8}/_{9} - ^{4x}/_{3}) + (^{1}/_{9} + ^{x}/_{3}) \ln(^{1}/_{9} + ^{x}/_{3}) + x \ln x] - 2R[^{8}/_{9} \ln(^{8}/_{9}) + ^{1}/_{9} \ln(^{1}/_{9})]$$ (11) The entropy change of (10), ΔS_{config} , is then given by $$\Delta S_{\text{config}} = S_{\text{config}}(\text{solid solution}) - (1 - \frac{x}{2})S_{\text{config}}(\gamma - \text{Al}_{8/3}\text{O}_4) - \frac{x}{2}S_{\text{config}}(\text{Si}_2\text{O}_4)$$ (12) The configurational entropy of quartz, $S_{config}(Si_2O_4)$, is assumed to be zero. The configurational entropy of γ alumina, $S_{\text{config}}(\gamma - \text{Al}_{8/3}\text{O}_4)$, was calculated assuming a completely random distribution of Al3+ and vacancies over the available sites and equations similar to (10) and (11). Configurational entropy calculations for γ-Al_{8/3}O₄ are fully presented and discussed elsewhere. ¹⁷ The resulting values of the configurational entropy of formation of the solid solutions are shown in Figure 4. There is a second contribution to the entropy difference between the solid solutions and α -Al₂O₃, the entropy of the α -Al₂O₃ $\rightarrow \gamma$ -Al₂O₃ transition. This entropy is also mainly configurational in nature and can be calculated similar to eqs 10 and 11 above. However, a more accurate determination can be made from data in the literature. γ -Al₂O₃ has a greater entropy than α-Al₂O₃. At high temperatures, entropy contributions to the free energy will become dominant, and a transition from α -Al₂O₃ $\rightarrow \gamma$ -Al₂O₃ can be expected at a high enough temperature. No such transition has been detected up to the melting point of α-Al₂O₃, 2327 K,¹⁸ ⁽¹⁵⁾ Akoagi, M.; Navrotsky, A. Phys. Earth Plan. Int. 1984, 36, 124. (16) Petrovic, I.; Navrotsky, A.; Davis, M. E.; Zones, S. I. Chem. Mater. 1993. 5. 1805. ⁽¹⁷⁾ Navrotsky, A.; Wechsler, B. A.; Geisinger, K.; Seifert, F. J. Am. Ceram. Soc. **1986**, 69, 418. (18) Schneider, S. J. Pure Appl. Chem. **1970**, 21, 115. **Figure 4.** Calculated (using eqs 10-12) entropies of formation of the aluminosilicate solid solutions relative to a mechanical mixture of α -Al₂O₃ and quartz as a function of SiO₂ content. but the liquid structure of alumina has been shown to have γ -Al₂O₃ character (i.e. tetrahedrally coordinated Al³⁺).¹⁹ The lowest temperature at which the α -Al₂O₃ $\rightarrow \gamma$ -Al₂O₃ transition could occur would then be the melting point, so ΔG of the α -Al₂O₃ $\rightarrow \gamma$ -Al₂O₃ transition is equal to or greater than zero at 2327 K, and ΔS is equal to or greater than 5.7 $J\boldsymbol{\cdot} K^{-1}\boldsymbol{\cdot} mol^{-1}$ Al_2O_3 or 7.6 $J\boldsymbol{\cdot} K^{-1}\boldsymbol{\cdot} mol^{-1}$ $Al_{8/3}O_4.$ The resulting calculated values of the Gibbs free energy of the aluminosilicate solid solutions at 1400 K are given in Table 3 and graphically presented in Figure 3. With respect to corundum and quartz, the solid solutions are all thermodynamically metastable by > 10 kJ·mol⁻¹. Thus, the apparent stability of the aluminosilicate solid solutions with respect to α -Al₂O₃ does not have a thermodynamic basis and must be a kinetic phenomenon. Our results do not explain the suppression of crystallization observed upon increasing SiO₂ content (Figure 1). This too may be a kinetic phenomenon. The transformation of amorphous alumina to γ-alumina requires rearrangement of silicon and aluminum ions and apparently the presence of silicon in solid solution poses a kinetic barrier for this transformation. We speculate that this may relate to a high energy barrier for silicon to occupy octahedral sites in the spinel structure. **Acknowledgment.** Financial support for this research has come from NSF grants (DMR94-00362 and DMR 92-15802) and the Air Force Office of Scientific Research (AFOSR-F49620-93-1-0259). CM970447F ⁽¹⁹⁾ Ansell, S.; Krishnan, S.; Weber, J. K. R.; Felten, J. L.; Nordine, P. C.; Beno, M. A.; Price, D. L.; Saboungi, M. L. *Phys. Rev. Lett.* **1997**, *78*, 464.